

Valutazione del ciclo di vita

Aggiornamento sull'evoluzione della produzione delle lastre e della stampa flessografica

Valutazione del ciclo di vita redatta da: Steve Barr, DuPont, Consulente Ingegneria chimica

Sintesi

La valutazione del ciclo di vita di DuPont⁽¹⁾ è stata aggiornata introducendo informazioni rilevanti tratte dal database Ecoinvent 3⁽²⁾ e i valori del quinto rapporto di valutazione del Gruppo Intergovernativo sui Cambiamenti Climatici (Intergovernmental Panel on Climate Change - IPCC) sull'impatto del potenziale surriscaldamento globale. Gli impatti valutati sono gli stessi dello studio originale: potenziale di riscaldamento globale (GWP – Global Warming Potential) e il consumo di energia non rinnovabile (NRE – Non-Renewable Energy).

È stato dimostrato che il processo termico digitale abbia un impatto GWP del 38% inferiore e un consumo NRE del 56% più basso della lavorazione digitale a solvente, senza includere la produzione della lastra grezza. Inserendo la produzione della lastra grezza, la lavorazione termica digitale presenta un impatto GWP del 17% inferiore e un consumo NRE del 20% più basso della lavorazione digitale a solvente.

Stando ai dati aggiornati,

la stampa flessografica rimane più vantaggiosa della rotocalco, con un consumo NER inferiore del 46% e un valore GWP inferiore del 51%.

Tali dati aggiornati confermano quanto emerso nello studio originale. È dimostrato che la lavorazione termica digitale presenta un impatto ambientale inferiore alla lavorazione con solventi.

Motivo dell'aggiornamento

Lo studio originario è stato completato nel 2008 con un aggiornamento delle informazioni sui solventi risalente al 2010. Nel corso del tempo, i database Ecoinvent sono stati aggiornati con informazioni sempre più recenti. Anche il Comitato IPPC ha pubblicato il suo 5° rapporto di valutazione sul GWP. Con l'aggiornamento dei dati e dei calcoli della valutazione dell'impatto, era giunto il momento di rivedere lo studio e verificare se nell'ultimo decennio le conclusioni fossero cambiate.

Valutazioni dell'impatto del ciclo di vita

L'impatto ambientale preso in considerazione in questo studio riguarda principalmente il consumo di energia non rinnovabile (fossile e nucleare) e il potenziale di riscaldamento globale.

Rispetto allo studio originario è stata impiegata la più recente metodologia di valutazione dell'impatto GWP. Per prassi si prende in considerazione un periodo di 100 anni ed è stata impiegata la metodologia del Gruppo (IPCC) applicando i valori del 5° rapporto di valutazione.

Risultati

Flessografia rispetto a Rotocalco

La figura 1 mostra il consumo di energia non rinnovabile e il valore GWP della stampa mediante le lavorazioni flessografiche e a rotocalco, applicando i dati aggiornati.

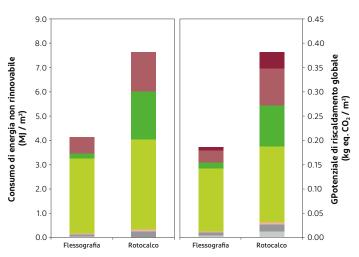


Figura 1: Impatto medio flessografia e rotocalco.

La stampa flessografica presenta un consumo NRE più basso del 46% e un GWP inferiore del 51% rispetto alla stampa a rotocalco. Il motivo di tale differenza risiede nell'elevato consumo di inchiostro miscelato, nell'impiego di solventi di pulizia e di energia elettrica impiegati nella stampa a rotocalco.

Il risultato è pressoché identico al confronto redatto nello studio originario.

La stampa
flessografica
permette un consumo
NRE più basso del 46%
e un GWP inferiore
del 51% rispetto alla
stampa a
rotocalco.

Sviluppo delle lastre flessografiche

La figura 2 mostra il consumo di energia non rinnovabile e il valore GWP dello sviluppo delle lastre presso produttori di lastre e stampatori, impiegando i dati medi aggiornati.

Come indicato in figura 2, l'impatto dello sviluppo di lastre del sistema Cyrel® FAST aggiornato (con materiale PET) presenta un consumo di energia non rinnovabile più basso del 56% e un potenziale di

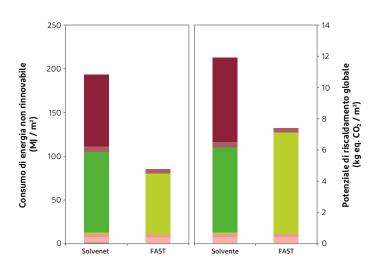


Figura 2: Sviluppo medio delle lastre flessografiche digitali.

riscaldamento globale del 38% inferiore rispetto alla media aggiornata dei processi di sviluppo delle lastre a solvente digitale, per una lastra da 0,067"/1,7 mm.

Il cambiamento più evidente nei risultati è dovuto all'impatto inferiore di NRE e GWP grazie all'evoluzione della rete elettrica. Negli ultimi dieci anni, la produzione di energia da fonti rinnovabili e gas naturali è incrementata, mentre è stata ridotta la produzione da carbone. Ciò ha prodotto una riduzione maggiore del valore GWP rispetto al NRE se confrontati con

lo studio originario.

Lo sviluppo di lastre con Cyrel® FAST permette un consumo NRE più basso del 56% e un potenziale di riscaldamento globale inferiore del 38%. Sviluppo e produzione delle lastre flessografiche

La figura 3 combina le informazioni illustrate nel grafico precedente con l'impronta ambientale della produzione delle lastre. L'impronta della produzione delle lastre (in grigio) è indicata come numero aggregato.

Risulta evidente che non sussistono differenze nella produzione delle lastre tra i due processi. La differenza risiede unicamente nel processo di sviluppo delle lastre.

Figura 3: Impatto medio dello Sviluppo e Produzione di lastre flessografiche digitali

La lavorazione termica digitale presenta un consumo di energia non rinnovabile più basso del 20% e un potenziale di riscaldamento globale del 17% inferiore rispetto alla media aggiornata dei processi di sviluppo e produzione delle lastre a solvente digitale, per una lastra da 0,067.

La produzione complessiva di lastre con Cyrel® FAST permette un consumo di energia non rinnovabile più basso del 20% e un potenziale di riscaldamento globale inferiore del 17%.

Riferimenti

(1) S. Veith, S. Barr, DuPont, "Life Cycle Assessment: Flexographic and Rotogravure Printing Comparison & Flexographic Plate Imaging Technologies", 2008,

■ Solvente e recupero

Unità di finitura leggeraEssiccatore

Processore di sviluppoUnità di esposizione

Immagine ablata
 Retro esposizione
 Produzione della lastra

- (2) Ecoinvent Versione 3: Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., and Weidema, B., 2016. The ecoinvent database versione 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, [online] 21(9), pp.1218–1230. Disponibile all'indirizzo: (http://link.springer.com/10.1007/s11367-016-1087-8)
- (3) Intergovernmental Panel on Climate Change (IPCC): Fifth Assessment Report (https://www.ipcc.ch/report/ar5/syr/)

